The Plurality and Borda Count Methods Lecture 9 Sections 1.1 - 1.3

Robb T. Koether

Hampden-Sydney College

Fri, Feb 2, 2018

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 1 / 26

< ロト < 同ト < ヨト < ヨト

The Math Club Election

- 3 The Plurality Method
- The Borda Count Method
- 5 Burying a Candidate
- 6 Assignment

-

4 A N

Outline

Definitions

- 2 The Math Club Election
- 3 The Plurality Method
- 4 The Borda Count Method
- 5 Burying a Candidate
- 6 Assignment

< ロト < 同ト < ヨト < ヨト

Definition (The Candidates)

The candidates are the people running for office in an election. If we are choosing something other than people, we call them alternatives.

Definition (The Voters)

The voters are the people who have a say in the outcome of the election. All votes count equally.

Definition (Single-choice Ballot)

In a single-choice ballot, each voter selects one candidate.

Definition (Preference Ballot)

In a preference ballot, each voter ranks all the candidates from most preferred to least preferred.

Definition (Truncated Preference Ballot)

In a truncated preference ballot, each voter ranks some, but not all, the candidates by preference.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Single-choice Ballot)

In a single-choice ballot, each voter selects one candidate.

Definition (Preference Ballot)

In a preference ballot, each voter ranks all the candidates from most preferred to least preferred.

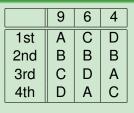
Definition (Truncated Preference Ballot)

In a truncated preference ballot, each voter ranks some, but not all, the candidates by preference.

• We will use preference ballots (also called ranked choice ballots).

Outline

Definitions



- 3 The Plurality Method
- 4 The Borda Count Method
- 5 Burying a Candidate
- 6 Assignment

< ロト < 同ト < ヨト < ヨト

- There are four candidates for Math Club president: A, B, C, and D.
- There are 19 voting members. Their preferences are shown on the next slide.

• • • • • • • •

The preferences.

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 8 / 26

æ

DQC

<ロト < 回ト < 回ト < 回ト

- Who should be elected president?
- Who is more popular, A or B?
- Who is more popular, A or C?
- Who is more popular, A or D?
- Who is least popular?

< 同 > < ∃ >

- Who should be elected president?
- Who is more popular, A or B?
- Who is more popular, A or C?
- Who is more popular, A or D?
- Who is least popular?
- Do "least popular" and "most unpopular" mean the same thing?

< 同 > < ∃ >

Outline

Definitions

- 2 The Math Club Election
- 3 The Plurality Method
- 4 The Borda Count Method
- 5 Burying a Candidate
- 6 Assignment

∃ ► 4 Ξ

Definition (The Plurality Method)

By the plurality method, the candidate with the most *first-place* votes wins.

Example

In the Debate Club example, A wins by the plurality method.

Web Page

Run the program Voting Methods on the web.

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 12 / 26

э

DQC

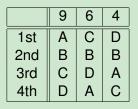
<ロト < 回ト < 回ト < 回ト

Outline

Definitions

- 2 The Math Club Election
- 3 The Plurality Method
- 4 The Borda Count Method
- 5 Burying a Candidate
- 6 Assignment

ъ


• • • • • • • • • • • • •

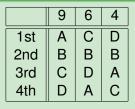
Definition (The Borda Count Method)

By the Borda count method, the voters rank the candidates. Then each rank is assigned points, higher ranks receiving more points. The candidate with the *most points* wins.

・ 同 ト ・ ヨ ト ・ ヨ ト

 Reconsider the Math Club election with 4 points for 1st, 3 for 2nd, 2 for 3rd, and 1 for 4th.

< 回 ト < 三 ト < 三

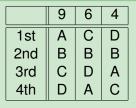

	9	6	4
1st	Α	С	D
2nd	В	В	В
3rd	С	D	А
4th	D	А	С

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 16 / 26

э

590

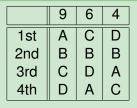


Points for $A: 9 \times 4 + 6 \times 1 + 4 \times 2 = 36 + 6 + 8 = 50$.

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 16 / 26

3



Points for $A: 9 \times 4 + 6 \times 1 + 4 \times 2 = 36 + 6 + 8 = 50$. Points for $B: 9 \times 3 + 6 \times 3 + 4 \times 3 = 27 + 18 + 12 = 57$.

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 16 / 26

3

Points for $A: 9 \times 4 + 6 \times 1 + 4 \times 2 = 36 + 6 + 8 = 50$. Points for $B: 9 \times 3 + 6 \times 3 + 4 \times 3 = 27 + 18 + 12 = 57$. Points for $C: 9 \times 2 + 6 \times 4 + 4 \times 1 = 18 + 24 + 4 = 46$.

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

3

	9	6	4
1st	Α	С	D
2nd	В	В	В
3rd	С	D	Α
4th	D	А	С

Points for $A : 9 \times 4 + 6 \times 1 + 4 \times 2 = 36 + 6 + 8 = 50$. Points for $B : 9 \times 3 + 6 \times 3 + 4 \times 3 = 27 + 18 + 12 = 57$. Points for $C : 9 \times 2 + 6 \times 4 + 4 \times 1 = 18 + 24 + 4 = 46$. Points for $D : 9 \times 1 + 6 \times 2 + 4 \times 4 = 9 + 12 + 16 = 37$.

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

-

• Which candidate wins?

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 17 / 26

- Which candidate wins?
- Which candidate comes in last?

< ロト < 同ト < ヨト < ヨト

- Which candidate wins?
- Which candidate comes in last?
- Would the outcome be different if the points were 3, 2, 1, 0?

- E - b

• I > • = • •

- Which candidate wins?
- Which candidate comes in last?
- Would the outcome be different if the points were 3, 2, 1, 0?
- What about 20, 15, 10, 5?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Which candidate wins?
- Which candidate comes in last?
- Would the outcome be different if the points were 3, 2, 1, 0?
- What about 20, 15, 10, 5?
- What about 5, 4, 3, 0?

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Definitions

- 2 The Math Club Election
- 3 The Plurality Method
- 4 The Borda Count Method
- Burying a Candidate

6 Assignment

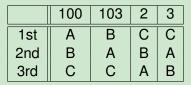
∃ ► < ∃</p>

- The Borda-count method is susceptible to chicanery.
- If the voters vote "honestly," then there is no problem.
- But what if...?

・ 同 ト ・ ヨ ト ・ ヨ ト

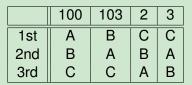
Example (Burying a Candidate)

• There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.


- There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.
- There are 208 voters.

- There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.
- There are 208 voters.
- 100 voters are Republican so they rank A first, C last.

- There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.
- There are 208 voters.
- 100 voters are Republican so they rank A first, C last.
- 103 voters are Democrats, so they rank B first, C last.


- There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.
- There are 208 voters.
- 100 voters are Republican so they rank A first, C last.
- 103 voters are Democrats, so they rank B first, C last.
- C has a nice-sounding name, so 5 voters rank him first.

- There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.
- There are 208 voters.
- 100 voters are Republican so they rank A first, C last.
- 103 voters are Democrats, so they rank B first, C last.
- C has a nice-sounding name, so 5 voters rank him first.
- Their preferences:

Example (Burying a Candidate)

- There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.
- There are 208 voters.
- 100 voters are Republican so they rank A first, C last.
- 103 voters are Democrats, so they rank B first, C last.
- C has a nice-sounding name, so 5 voters rank him first.
- Their preferences:

Who wins?

Example (Burying a Candidate)

- There are three candidates: A, the Republican; B, the Democrat; and C, the unrepentant convicted child molester who belongs to no party.
- There are 208 voters.
- 100 voters are Republican so they rank A first, C last.
- 103 voters are Democrats, so they rank B first, C last.
- C has a nice-sounding name, so 5 voters rank him first.

• Their preferences:

	100	103	2	3
1st	A	В	С	С
2nd	В	A	В	А
3rd	С	С	Α	В

• Who wins? B the Democrat wins.

- What if the Republicans decide to "bury" the Democrat?
- Their preferences:

	100	103	2	3
1st	A	В	С	С
2nd	В	Α	В	Α
3rd	С	С	А	В

• . . .

э

< ロト < 同ト < ヨト < ヨト

- What if the Republicans decide to "bury" the Democrat?
- Their false preferences:

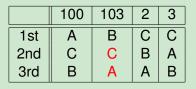
	100	103	2	3
1st	Α	В	С	С
2nd	С	Α	В	A
3rd	В	С	А	В

Now who wins?

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

・ 同 ト ・ ヨ ト ・ ヨ ト

- What if the Republicans decide to "bury" the Democrat?
- Their false preferences:


	100	103	2	3
1st	A	В	С	С
2nd	С	Α	В	A
3rd	В	С	А	В

• Now who wins? A the Republican wins because B is "buried."

・ 同 ト ・ ヨ ト ・ ヨ ト

- But, what if, in addition, the Democrats also decide to "bury" the Republican?
- Their preferences:

• • • •

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

3

< ロト < 同ト < ヨト < ヨト

Example (Burying a Candidate)

- What if, in addition, the Democrats decide to "bury" the Republican?
- Their false preferences:

	100	103	2	3
1st	A	В	С	С
2nd	С	С	В	A
3rd	В	A	Α	В

Now who wins? (A and B are both "buried.")

< ロト < 同ト < ヨト < ヨト

Example (Burying a Candidate)

- What if, in addition, the Democrats decide to "bury" the Republican?
- Their false preferences:

	100	103	2	3
1st	A	В	С	С
2nd	С	С	В	A
3rd	В	Α	Α	В

• Now who wins? (A and B are both "buried.") The unrepentant convicted child molester wins! Oops!

Outline

Definitions

- 2 The Math Club Election
- 3 The Plurality Method
- 4 The Borda Count Method
- 5 Burying a Candidate

∃ ► < ∃</p>

Assignment

• Chapter 1: Exercises 11, 13, 15, 16, 21, 25, 27, 29.

Robb T. Koether (Hampden-Sydney College) The Plurality and Borda Count Methods

Fri, Feb 2, 2018 26 / 26

< ロト < 同ト < ヨト < ヨト